Sabtu, 06 April 2013

Teori Bahasa Automata


Teori Bahasa
Teori bahasa membicarakan bahasa formal (formal language), terutama untuk kepentingan perancangan kompilator (compiler) dan pemroses naskah (text processor). Bahasa formal adalah kumpulan kalimat. Semua kalimat dalam sebuah bahasa dibangkitkan oleh sebuah tata bahasa (grammar) yang sama.

Automata adalah mesin abstrak yang dapat mengenali (recognize), menerima(accept), atau membangkitkan (generate) sebuah kalimat dalam bahasa tertentu.



Beberapa Pengertian Dasar
•Simbol adalah sebuah entitas abstrak (seperti halnya pengertian titik dalam geometri). Sebuah huruf atau sebuah angka adalah contoh simbol.
• String adalah deretan terbatas (finite) simbol-simbol. Sebagai contoh, jika a, b, dan c adalah tiga buah simbol maka abcb adalah sebuah string yang dibangun dari ketiga simbol tersebut.
• Jika w adalah sebuah string maka panjang string dinyatakan sebagai | w | dan didefinisikan sebagai cacahan (banyaknya) simbol yang menyusun string tersebut. Sebagai contoh, jika w = abcb maka | w | = 4.
• String hampa adalah sebuah string dengan nol buah simbol. String hampa dinyatakan dengan simbol ε (atau ^) sehingga |ε |= 0. String hampa dapat dipandang sebagai simbol hampa karena keduanya tersusun dari nol buah simbol.
• Alfabet adalah hinpunan hingga (finite set) simbol-simbol